A flywheel is rotating with an angular velocity of 20 rad/s. If it experiences a constant torque that reduces its angular velocity to 10 rad/s in 5 seconds, what is the magnitude of the torque if the moment of inertia is 4 kg·m²?

Practice Questions

1 question
Q1
A flywheel is rotating with an angular velocity of 20 rad/s. If it experiences a constant torque that reduces its angular velocity to 10 rad/s in 5 seconds, what is the magnitude of the torque if the moment of inertia is 4 kg·m²?
  1. 8 N·m
  2. 4 N·m
  3. 2 N·m
  4. 10 N·m

Questions & Step-by-step Solutions

1 item
Q
Q: A flywheel is rotating with an angular velocity of 20 rad/s. If it experiences a constant torque that reduces its angular velocity to 10 rad/s in 5 seconds, what is the magnitude of the torque if the moment of inertia is 4 kg·m²?
Solution: The angular deceleration α = (ω_final - ω_initial) / time = (10 - 20) / 5 = -2 rad/s². Torque τ = Iα = 4 kg·m² * (-2 rad/s²) = -8 N·m, so the magnitude is 8 N·m.
Steps: 0

Related Questions

Soulshift Feedback ×

On a scale of 0–10, how likely are you to recommend The Soulshift Academy?

Not likely Very likely