Electrostatics

Q. A capacitor has a capacitance of 4μF and is charged to 12V. What is the charge on the capacitor?
  • A. 48μC
  • B. 12μC
  • C. 4μC
  • D. 3μC
Q. A capacitor is charged to a potential difference of 12 V. If the capacitance is 4 µF, what is the charge stored in the capacitor?
  • A. 12 µC
  • B. 24 µC
  • C. 48 µC
  • D. 36 µC
Q. A capacitor is charged to a potential difference of V. What is the energy stored in the capacitor?
  • A. 1/2 CV²
  • B. CV
  • C. V²/C
  • D. 1/2 QV
Q. A capacitor is charged to a potential of 12 V. If the capacitance is 3 µF, what is the energy stored in the capacitor?
  • A. 0.18 mJ
  • B. 0.36 mJ
  • C. 0.54 mJ
  • D. 0.72 mJ
Q. A capacitor is charged to a potential of V. If the charge on the capacitor is doubled, what will be the new potential?
  • A. V
  • B. 2V
  • C. V/2
  • D. 4V
Q. A capacitor is charged to a voltage V and then disconnected from the battery. If the distance between the plates is increased, what happens to the charge?
  • A. Increases
  • B. Decreases
  • C. Remains the same
  • D. Becomes zero
Q. A capacitor is charged to a voltage V and then disconnected from the battery. If the distance between the plates is doubled, what happens to the voltage across the capacitor?
  • A. It doubles
  • B. It halves
  • C. It remains the same
  • D. It quadruples
Q. A capacitor is charged to a voltage V and then disconnected from the battery. What happens to the charge on the capacitor if the distance between the plates is increased?
  • A. Charge increases
  • B. Charge decreases
  • C. Charge remains the same
  • D. Charge becomes zero
Q. A capacitor is charged to a voltage V and then disconnected from the battery. What happens to the charge on the capacitor if the voltage is doubled?
  • A. Charge doubles
  • B. Charge halves
  • C. Charge remains the same
  • D. Charge quadruples
Q. A capacitor is charged to a voltage V and then the voltage is halved. What happens to the energy stored in the capacitor?
  • A. It doubles
  • B. It halves
  • C. It remains the same
  • D. It becomes zero
Q. A capacitor of capacitance 10μF is charged to a potential difference of 100V. What is the energy stored in the capacitor?
  • A. 0.05 J
  • B. 0.1 J
  • C. 0.2 J
  • D. 0.3 J
Q. A capacitor of capacitance 10μF is charged to a potential of 100V. What is the energy stored in the capacitor?
  • A. 0.05 J
  • B. 0.1 J
  • C. 0.2 J
  • D. 0.01 J
Q. A capacitor of capacitance 5μF is charged to a potential of 10V. What is the energy stored in the capacitor?
  • A. 0.25 mJ
  • B. 0.5 mJ
  • C. 1 mJ
  • D. 2.5 mJ
Q. A capacitor of capacitance C is charged to a voltage V and then connected in parallel with another uncharged capacitor of capacitance C. What is the final voltage across the capacitors?
  • A. V/2
  • B. V
  • C. 2V
  • D. 0
Q. A capacitor of capacitance C is connected to a battery of voltage V. If the battery is removed and the capacitor is connected to another capacitor of capacitance 2C, what is the final voltage across the combination?
  • A. V/3
  • B. V/2
  • C. V
  • D. 2V
Q. A charge of +3μC is placed at the origin. What is the electric potential at a point 0.5m away?
  • A. 5400 V
  • B. 1800 V
  • C. 7200 V
  • D. 3600 V
Q. A charge of +3μC is placed at the origin. What is the potential at a point 0.3m away?
  • A. 9000 V
  • B. 3000 V
  • C. 10000 V
  • D. 15000 V
Q. A charge of +3μC is placed in a uniform electric field of strength 1500 N/C. What is the work done in moving the charge 0.2 m in the direction of the field?
  • A. 90 J
  • B. 60 J
  • C. 30 J
  • D. 45 J
Q. A charge of 5 μC is placed in an electric field of 2000 N/C. What is the potential energy of the charge?
  • A. 10 mJ
  • B. 1 mJ
  • C. 0.5 mJ
  • D. 2 mJ
Q. A charged capacitor has a potential difference of 12 V across its plates. If the capacitance is 4 µF, what is the charge stored in the capacitor?
  • A. 48 µC
  • B. 12 µC
  • C. 3 µC
  • D. 24 µC
Q. A charged particle moves from a point of higher electric potential to a point of lower electric potential. What happens to its kinetic energy?
  • A. Increases
  • B. Decreases
  • C. Remains constant
  • D. Cannot be determined
Q. A charged particle moves from a region of high potential to low potential. What happens to its kinetic energy?
  • A. It increases
  • B. It decreases
  • C. It remains constant
  • D. It becomes zero
Q. A charged sphere has a radius R and a total charge Q. What is the electric potential at a point outside the sphere at a distance r from the center (r > R)?
  • A. kQ/R
  • B. kQ/r
  • C. kQ/(R+r)
  • D. 0
Q. A cube of side length a has a charge Q at one of its corners. What is the total electric flux through the cube?
  • A. Q/ε₀
  • B. Q/(6ε₀)
  • C. Q/(12ε₀)
  • D. 0
Q. A cylindrical Gaussian surface encloses a charge Q. If the height of the cylinder is doubled while keeping the radius constant, what happens to the electric flux through the curved surface?
  • A. It doubles
  • B. It halves
  • C. It remains the same
  • D. It becomes zero
Q. A cylindrical Gaussian surface encloses a long straight wire carrying a current. What is the electric field at a distance r from the wire?
  • A. 0
  • B. I/(2πε₀r)
  • C. λ/(2πε₀r)
  • D. σ/(2ε₀)
Q. A cylindrical Gaussian surface encloses a long straight wire carrying a current. What is the electric field at a point outside the cylinder?
  • A. Zero
  • B. Directly proportional to the distance from the wire
  • C. Inversely proportional to the distance from the wire
  • D. Constant
Q. A cylindrical Gaussian surface of length L and radius R encloses a charge Q. What is the electric field E at a distance R from the axis of the cylinder?
  • A. Q/(2πε₀R)
  • B. Q/(4πε₀R²)
  • C. Q/(ε₀L)
  • D. 0
Q. A dipole consists of two charges +q and -q separated by a distance d. What is the expression for the dipole moment?
  • A. qd
  • B. q/d
  • C. q^2d
  • D. q/d^2
Q. A dipole consists of two equal and opposite charges separated by a distance of 0.1m. What is the dipole moment if each charge is 1μC?
  • A. 1 × 10^-7 C m
  • B. 1 × 10^-6 C m
  • C. 1 × 10^-5 C m
  • D. 1 × 10^-4 C m
Showing 1 to 30 of 192 (7 Pages)