Q. A transformer operates on the principle of electromagnetic induction. What is the primary function of a transformer?
A.
To increase voltage
B.
To decrease voltage
C.
To convert AC to DC
D.
To store energy
Solution
A transformer is designed to increase or decrease the voltage in an AC circuit through electromagnetic induction, depending on the turns ratio of the primary and secondary coils.
Q. A tuning fork produces a sound wave of frequency 440 Hz. What is the wavelength of the sound wave in air (speed of sound = 340 m/s)?
A.
0.77 m
B.
0.85 m
C.
0.90 m
D.
1.00 m
Solution
The wavelength λ can be calculated using the formula λ = v/f, where v is the speed of sound and f is the frequency. Thus, λ = 340 m/s / 440 Hz = 0.77 m.
Q. A tuning fork produces a sound wave with a frequency of 440 Hz. What is the wavelength of the sound wave in air, given that the speed of sound in air is approximately 340 m/s?
A.
0.77 m
B.
0.85 m
C.
0.90 m
D.
1.00 m
Solution
Wavelength λ is given by the formula λ = v/f. Here, v = 340 m/s and f = 440 Hz. Thus, λ = 340/440 = 0.7727 m, approximately 0.77 m.
Q. A uniform rod of length L and mass M is pivoted at one end and released from rest. What is the angular velocity of the rod when it makes an angle θ with the vertical?
A.
√(g/L)(1-cosθ)
B.
√(2g/L)(1-cosθ)
C.
√(g/L)(1+cosθ)
D.
√(2g/L)(1+cosθ)
Solution
Using conservation of energy, the potential energy lost equals the rotational kinetic energy gained. The angular velocity ω can be derived as ω = √(2g/L)(1-cosθ).
Q. A uniform rod of length L and mass M is pivoted at one end and released from rest. What is the angular velocity just before it hits the ground?
A.
√(3g/L)
B.
√(2g/L)
C.
√(g/L)
D.
√(4g/L)
Solution
Using conservation of energy, potential energy at the top = rotational kinetic energy at the bottom. mgh = (1/2)Iω^2. For a rod, I = (1/3)ML^2, h = L/2. Solving gives ω = √(3g/L).
Q. A uniformly charged sphere of radius R has a total charge Q. What is the electric field at a point outside the sphere (r > R)?
A.
0
B.
Q/(4πε₀r²)
C.
Q/(4πε₀R²)
D.
Q/(4πε₀R)
Solution
For a uniformly charged sphere, the electric field outside the sphere behaves as if all the charge were concentrated at the center, thus E = Q/(4πε₀r²).
Q. A volume is measured as 2.0 L with an uncertainty of ±0.1 L. If this volume is used to calculate density, what is the uncertainty in density if mass is measured as 4.0 kg with an uncertainty of ±0.2 kg?
A.
0.1 kg/L
B.
0.2 kg/L
C.
0.05 kg/L
D.
0.4 kg/L
Solution
Using the formula for density (density = mass/volume), the uncertainty in density can be calculated using the formula for propagation of uncertainty.